From Certain Uncertainties to Certain Decisions: Pragmatic Study Designs in Pandemic Response

Lars G Hemkens

The Pandemic Evidence Collaboration 2025 conference, Banff, 15 May 2025

Certain uncertainties

"Women have fewer teeth than men"

Aristoteles; HA II 3, 501b19

"Pneumonia is one of the diseases in which a timely venesection may save life"

Sir William Osler; Principles and Practice of Medicine;1892

- Bloodletting for pneumonia
- Mercury for syphilis
- Lobotomy for psychiatric diseases
- Heroin for cough
- Bedrest in myocardial infarction
- Low-fiber diet in diverticulosis
- Surgery for peptic ulcers
- Intensive glucose lowering in type 2 diabetes
- Hormone replacement therapy in women
- Vitamine E in cardiac diseases
- Antiarrhythmic in myocardial infarction
- Stents in stable CVD

"Approximately **90% of new drugs** entered into clinical development on **promising** preclinical findings **fail** to yield sufficient **efficacy** and **safety** to receive ...(FDA) license"

Benjamin et al. PLoS Biol 2017 (citing Hay et al. Nature Biotech 2014; 32: 40-51).

"Only one third of the ideas tested at Microsoft improved the metric(s) they were designed to improve"

Kohavi, R. et al. 2013 Online Controlled Experiments at Large Scale. Retrieved from http://bit.ly/ExPScale

Certain uncertainties in pandemic research

Assumptions that need certainty

- 1. Data for A vs B correct
- 2. Data for Outcome correct and measured identically in both groups

3. A) All differences between A and B are known
B) All differences between A and B are measured
C) All differences between A and B are statistically adequately controlled

Some essential data required for unbiased assessments

Domain	Category	Examples	
Key Information	Exposure	A/B assignment	≜ ⊞
	Outcome	Symptoms, hospitalization, death	− šШ
Individual-Level	 Risk of exposure 	Household density, occupation, social interactions	
	 Behavioral/Psychological 	Risk perception, mental health, social support, adherence	
	 Risk of outcome (if infected) 	Age, comorbidities/medications, care access, genetics, vaccination, immunity	
	 Outcome detection 	Health literacy, testing access, healthcare-seeking behavior	
Contextual/Systemic	 Environment 	Urban/rural, ventilation, public space density	
	 Community 	Social networks, institutions (e.g., schools, nursing homes)	
	 Social norms 	Culture, stigma, mask-wearing norms	
	 Healthsystem capacity 	ICU availability, staff, diagnostic infrastructure	
	 Occupational 	Workplace, transportation dependence, remote work possible	
	 Digital infrastructure 	Telehealth, contact tracing apps, online education access	
	 Information 	Health communication, media exposure, misinformation	
Specific Temporal	 Pandemic and policy 	Early outbreak, variants, vaccination waves, lockdowns, mandates	

Some Confounder Relationships

BMI and physical activity in early childhood with atopy

Byberg et al. Clinical and Translational Allergy 2016;6:33; Figure S1 URL: https://ctajournal.biomedcentral.com/articles/10.1186/s13601-016-0124-9 CC-BY 4.0: http://creativecommons.org/licenses/by/4.0/ No changes were made

Some Confounder Relationships Alcohol and Cardiovascular disease

Wallach et al. BMC Medical Research Methodology 2020; 20:64 URL: https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-020-0914-6 CC-BY 4.0: http://creativecommons.org/licenses/by/4.0/ No changes were made > J Clin Epidemiol. 2018 Jan;93:94-102. doi: 10.1016/j.jclinepi.2017.09.013. Epub 2017 Sep 21.

Interpretation of epidemiologic studies very often lacked adequate consideration of confounding

Lars G Hemkens 1 , Hannah Ewald 2 , Florian Naudet 3 , Aviv Ladanie 2 , Jonathan G Shaw 4 , Gautam Sajeev 5 , John P A Ioannidis 6

Affiliations + expand PMID: 28943377 DOI: 10.1016/j.jclinepi.2017.09.013

Abstract

Background and objective: Confounding bias is a most pervasive observational epidemiologic research. We assessed whether auth epidemiologic studies consider confounding bias when interpretin 57% discuss confounding3% limit conclusions in any way

Study design and setting: We randomly selected 120 cohort or case-control studies published in 2011 and 2012 by the general medical, epidemiologic, and specialty journals with the highest impact factors. We used Web of Science to assess citation metrics through January 2017.

Results: Sixty-eight studies (56.7%, 95% confidence interval: 47.8-65.5%) mentioned "confounding" in the Abstract or Discussion sections, another 20 (16.7%; 10.0-23.3%) alluded to it, and there was no mention or allusion at all in 32 studies (26.7%; 18.8-34.6%). Authors often acknowledged that for specific confounders, there was no adjustment (34 studies; 28.3%) or deem it possible or likely that confounding affected their main findings (29 studies; 24.2%). However, only two studies (1.7%; 0-4.0%) specifically used the words "caution" or "cautious" for the interpretation because of confounding-related reasons and eventually only four studies (3.3%; 0.1-6.5%) had limitations related to confounding or any other bias in their Conclusions. Studies mentioning that the findings were possibly or likely affected by confounding were more frequently cited than studies with a statement that findings were unlikely affected (median 6.3 vs. 4.0 citations per year, P = 0.04).

Conclusions: Many observational studies lack satisfactory discussion of confounding bias. Even when confounding bias is mentioned, authors are typically confident that it is rather irrelevant to their findings and they rarely call for cautious interpretation. More careful acknowledgment of possible impact of confounding is not associated with lower citation impact.

Largest harmful
 Largest protective
 Smallest (closest to the null value of 1.0)

Analytical choices

"Most observational studies evaluating the impact of alcohol on breast cancer report relative effect estimates for the same associations that diverge by >2-fold."

A certain assumption in a pandemic is that most others are uncertain

Pragmatic Evidence

Πρᾶγμα

"What difference would it practically make ... if this notion rather than that notion were true?

If no practical difference whatever can be traced, then the alternatives mean practically the same thing, and all dispute is idle" Pragmatic trials

Assumptions in randomized trials

- 1. Data for A vs B correct
- 2. Data for Outcome correct and measured identically in both groups

3. Decision for A and B randomly

The nature of a randomized trial

The nature of a pragmatic randomized trial

A / B are real choices Outcome matters in practice

A randomized trial that helps to make a better decision about which treatment strategy to use in practice is pragmatic

Not a pragmatic randomized trial

- **Population:** Selected only, not the real target
- Intervention: Artificial (e.g., supervised by researchers, blinded)
- **Follow-up:** Artificial (e.g., in research centers)
- Adherence: Optimized / non-adherent excluded
- **Outcomes**: Matter for researchers not for decision makers

All essential data required for pragmatic trials

Domain	Са	tegory	Examples	
Key Information	•	Exposure	A/B assignment	<u>A</u>
	•	Outcome	Symptoms, hospitalization, death	— в̀Ш
Individual-Level	•	Risk of exposure	Household density, occupation, social interactions	
	•	Behavioral/Psychological	Risk perception, mental health, social support, adherence	
	•	Risk of outcome (if infected)	Age, comorbidities/medications, care access, genetics, vaccination, immunity	
	•	Outcome detection	Health literacy, testing access, healthcare-seeking behavior	
Contextual/Systemic		Environment	Urban/rural, ventilation, public space density	
	•	Community	Social networks, institutions (e.g., schools, nursing homes)	
	•	Social norms	Culture, stigma, mask-wearing norms	
	•	Healthsystem capacity	ICU availability, staff, diagnostic infrastructure	
	-	Occupational	Workplace, transportation dependence, remote work possible	
	-	Digital infrastructure	Telehealth, contact tracing apps, online education access	
	-	Information	Health communication, media exposure, misinformation	
Specific Temporal	•	Pandemic and policy	Early outbreak, variants, vaccination waves, lockdowns, mandates	

Comparisons that matter

Decisions

- A vs B are **true actionable** decisions public health leaders can make
- No randomization without true uncertainty
- If the answer is clear: act, don't experiment

Interventions

- Must be feasible in the actual setting
- Require no unrealistic or extra (research) resources
- All compared strategies must be implementable post-trial

Outcomes that matter

General

- Stages: Direct → Infection → Disease → Societal/Population Impact
- Objective where possible
- Blinded where possible

Outcome Types

- Direct (e.g., missed school, financial loss)
- Infection-related (e.g., asymptomatic infections)
- Disease-related (e.g., symptoms, hospitalization, death)
- Societal/Population-level (e.g., health system burden, economic impact)

Populations

- Individuals directly affected
- Close contacts (!)
- Society/population at large (!)
- Special Subgroups, e.g., vulnerable household members, essential workers (e.g., police, ICU staff)

Rapid setup and Scalability

1. Solid Data Infrastructure

- Outcome data essential randomized or not
- Standardized formats and interoperability

2. Use What Exists

- Leverage routine public health data (no added burden)
- Digital surveillance (e.g., standardized contact tracing)

3. Enhance When Needed

Add research elements via contact tracing teams:

• Trial participant? (individual or part of cluster)

Contact of participant? (e.g., grandparents of child in trial schools)

Rapid setup and Scalability

4. Prepare in Advance

- Pre-approved, tested protocols
- Train public health staff in research
- Collaborate early: health authorities, regulators, communities
- Ethical and legal preparedness

5. Keep Designs Simple

Avoid complexity that delays or risks failure

WHAT before WHY approach

- **Prioritize decisions**: What works first. Why it works later.
- Tom Chalmers' "Randomize the first patient!" → Randomize the first decision!
- Adherence is a critical effect modifier but observe not control
- Combine Pragmatic (WHAT) and Explanatory (WHY) Research:
 - Observational analyses using routine health data
 - **Decentralization / Remote interviews** (e.g. via phone, mobile apps)
 - **Blood sampling** (e.g., immune markers)
 - **Subgroup analyses** (e.g., high-adherence groups like health workers)
- Leverage modern technology as digital biomarkers to monitor adherence, for example
 - Air quality sensors (ventilation)
 - Hand-sanitizer sensors (usage tracking)
- Advanced stat. approaches (causal modeling, estimands): effect modifiers

Summary

- Uncertainty dominates decision-making and research in a pandemic
- Priority is not more data reliable data, available fast
- Most assumptions are uncertain and often wrong
- Designs that reduce uncertainty without uncertain assumptions.
- Only randomization provides certainty given strong/unrealistic assumptions
- Pragmatic trials in pandemics are not only possible they are essential for evidence that matters when it matters most.

Prof. Dr. med. Lars G. Hemkens MPH

Academic Director Clinical Trials Department of Clinical Research University of Bern | Bern | Switzerland

Lead of Pragmatic Trials and Real-World Evidence RC2NB - Research Center for Clinical Neuroimmunology and Neuroscience Basel University of Basel and University Hospital Basel | Basel | Switzerland

ORCiD: 0000-0002-3444-1432

Lars.Hemkens@unibe.ch

dcr.unibe.ch

www.pragmatic-evidence.org

www.rc2nb.unibas.ch

PRAGMATIC EVIDENCE RC2NB LAB

Special Thanks

P Janiaud (U Bern) J Hirt (U Basel) A Schmitt (U Basel) L Chabeaud (U Basel) T Woelfle (U Basel) F Naudet (U Rennes / INSERM) O Fröbert (U Orebro) HM Verkooijen (UMC Utrecht) B Thombs (U McGill) D Moher (U Ottawa) A Fretheim (U Oslo) S Goodman (U Stanford) JPA Ioannidis (U Stanford) D Contopoulus-Ioannidis (U Stanford) B Djulbegovic (City of Hope) G Guyatt (McMaster) U Dirnagl (Charite / BIH / QUEST) B Kasenda (U Basel) J Kuhle (U Basel) J Kuhle (U Basel) C Granziera (U Basel) L Kappos (U Basel) E Segelov (U Bern)